API Reference¶
Welcome to the API documentation for the Ultimate MkDocs Material Guide project. This section provides comprehensive documentation for all modules, classes, and functions in the codebase.
Overview¶
The project is organized into the following modules:
Core API Documentation¶
- Example Module - Core example implementations and demonstrations
- Base Classes - Foundation classes and abstract interfaces
- Calculator - Mathematical operations and calculations
- Utilities - Helper functions and common utilities
Docstring Style Examples¶
- Google-Style Documentation - Modern, readable format popular in open-source projects
- NumPy-Style Documentation - Structured format ideal for scientific computing
- Sphinx-Style Documentation - Traditional format with rich reStructuredText markup
- Style Comparison - Side-by-side comparison of all three docstring styles
Quick Navigation¶
Core Components¶
Component | Description | Key Classes |
---|---|---|
Base | Abstract base class for examples | BaseExample |
Calculator | Mathematical operations | Calculator |
Utils | Utility functions | format_number , validate_input |
Common Use Cases¶
- Getting Started: See Example Module for basic usage patterns
- Mathematical Operations: Use the Calculator class
- Input Validation: Leverage utility functions
- Custom Examples: Extend BaseExample
Installation and Setup¶
To use these modules in your own projects:
# Import core components
from src.example.base import BaseExample
from src.example.calculator import Calculator
from src.example.utils import format_number, validate_input
# Create calculator instance
calc = Calculator()
# Validate and format numbers
number = validate_input("42")
formatted = format_number(number)
Configuration¶
The modules support various configuration options. See individual module documentation for specific configuration details:
Examples and Tutorials¶
For practical examples and step-by-step tutorials:
- Code Samples - Working examples using the API
- Jupyter Notebooks - Interactive demonstrations
- Best Practices - Recommended usage patterns
Error Handling¶
All modules implement consistent error handling patterns. Common exceptions include:
ValueError
- Invalid input parametersTypeError
- Incorrect data typesCalculationError
- Mathematical operation failures
See individual module documentation for specific error handling details.
Contributing¶
When extending or modifying the API:
- Follow the established patterns in BaseExample
- Add comprehensive docstrings in Google format
- Include type hints for all parameters and return values
- Write tests for new functionality
- Update this documentation
For more details, see our Contributing Guide.
Related Documentation¶
- MkDocstrings Configuration - How this documentation is generated
- Features Overview - All available features
- Getting Started - Project setup and basics